Client/Server Concepts


In the past, the Internet interface for businesses has been written in C++, Visual Basic, or PowerBuilder. The database behind the interface typically has been Microsoft Access or Oracle. Java is starting to change all that. 
The client, which is a person or a computer system, sees the interface; and the server, which is a computer that houses a network or database, handles data manipulation and connectivity issues. Client-server architecture is a general description of a networked system where a client program initiates contact with a separate server program for a specific purpose. The client requests a service provided by the server. This separation of the interface and the database is called a two-tier system. The two-tier system contains application logic typically tied to the client, with heavy network utilization required to mediate the client-server interaction.


A second generation of client-server implementations adds a middle tier to achieve a three-tier architecture, or system. In a three-tier system, the application is split into three parts: the Web browser, the application server, and the database server. A program to handle both input and output separates the interface and database, providing the logic to both of the other parts of the system, which leads to faster network communications, greater reliability, and improved overall performance.


With the advent of Java and the Internet, many businesses have taken a multi-tier approach, in which data moving from a client to a server goes through several stages. The middle tier is expanded to provide connections to various types of services, integrating and coupling them to the client, and also to each other. Partitioning the application logic among various hosts also can create a multi-tier approach. This encapsulation of distributed functionality provides significant advantages such as reusability and, therefore, reliability.

In a multi-tier approach, Java applets with their own objects and methods create the interface. A Java applet has a very distinct set of capabilities and restrictions within the language framework, especially from a security standpoint. Java applets can neither read nor write files on a local system, unless special permissions are assigned and accepted. Applets cannot create, rename, or copy files or directories on a local system. They also cannot make outside network connections except to the host machine from which they originated.


Most business, therefore, will create a client interface, with HTML or a scripting tool, to allow users to enter data. The database itself is separated from the interface by a Web server, usually complete with a firewall to protect the database from the Internet. The program on the Web server that runs the connectivity is in charge. Sun Microsystems provides an Application Program Interface (API) called the Java Database Connectivity (JDBC) that has its own set of objects and methods to interact with underlying databases. Java programs can open a connection to a database and then create a transaction object, such as an insert, delete, or update. The transaction statements are passed to the underlying database management system (DBMS) by the program.
Another solution is to use a Java servlet. Servlets are modules that run inside request/response-oriented servers, such as Java-enabled Web servers, and extend them. For example, a servlet might be responsible for taking data in an HTML order-entry form and then applying the logic necessary to update a company's order database. Servlets replace cumbersome and non-robust scripting tools such as JavaScript or CGI
. A servlet API, used to write servlets, knows nothing about how the servlet is loaded. This allows servlets to be used with many different Web servers.
Servlets are effective substitutes for other kinds of scripting tools because they provide a way to generate dynamic documents that are both easier to write and faster to run. Because they are written in Java, they also address the problem of doing server-side programming with platform-specific APIs. Servlets also offer performance advantages for developers and webmasters, because — unlike code from other scripting tools — servlets do not create, or fork off, additional processes each time a request is made from a browser. Servlets are developed with the Java Servlet API, a standard Java extension. Many popular Web servers already support servlets.

�I think many of these terms should be bold for emphasis, especially when accompanied by a definition.


�I think some examples are necessary here.





